
Encoding RGB Colors into Pronounceable,
Reversible Names

Introduction

Encoding 24-bit RGB color values (e.g. hex #RRGGBB) into human-friendly names is challenging.
Traditional named colors (like CSS color keywords or X11 colors) cover only a small fraction of the
16,777,216 possible RGB values, and their names are often arbitrary. We seek a lossless encoding that
assigns every color a unique pronounceable name. Key requirements include:

Full reversibility: The mapping from color to name (and back) must be one-to-one with no
information loss.
Human readability & auditory clarity: Names should be easy to read, spell, and pronounce.
They should be distinct when spoken aloud or read by text-to-speech, minimizing confusion.
No ambiguous case/symbol usage: Avoid encodings that rely on differences invisible in speech
(e.g. case-sensitivity or punctuation). For example, treating “abc” vs “Abc” as different
codes would be problematic since they sound identical.
Phonetic consistency across languages: Where possible, use phonemes and patterns that are
broadly pronounceable. The scheme should ideally be adaptable or localizable so speakers of
different languages can still use distinct, valid names without tongue-twisters.

Below, we first examine existing color-naming systems and why they fall short of these goals. Then we
explore algorithms and encoding schemes designed to meet the above criteria. Finally, we compare
promising approaches in a summary table and recommend directions for implementation.

Existing Color Naming Systems and Their Limitations

CSS/X11 Named Colors: Web standards define about 140 named colors (e.g. "red" ,
"LightSeaGreen"). These names are intuitive for basic colors but cover only a tiny subset of

RGB space . They are not reversible (many colors have no name, and some names like
"aqua" / "cyan" refer to the same hex). In practice, their usability is high for common colors

but scope is very limited.

XKCD Color Survey Names: A crowdsourced list of 954 color names resulted from the XKCD color
survey . Examples include creative names like "dusty lavender" or "vomit green" .
This set is larger and reflects how people describe colors, improving descriptive clarity. However,
it still covers only ~1,000 points in color space . Many RGB values remain unnamed, so it’s not
exhaustive or reversible. Usability is good for communication (since names are real phrases), but
consistency suffers – some names are quirky or overlapping (e.g. multiple shades all called
“blueish”).

Resene (Paint) Colors: Paint manufacturers like Resene catalog thousands of colors each with
unique names (Resene’s online library includes over 6,000 named swatches). This vastly
expands the naming scope, far beyond CSS or XKCD lists. Names like “Alabaster”, “Bali Hai”, or
“Butter Yellow” are often chosen to be evocative. Despite the breadth, these are not systematic:

•

•

•

•

•

1

•
2

3

•
4

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://www.w3schools.com/cssref/css_colors.php#:~:text=All%20modern%20browsers%20support%20the,along%20with%20different%20text%20colors
https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=The%20full%20table%20of%20954,would%20be%20a%20huge%20headache
https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=Image
https://www.resene.co.nz/swatches/?srsltid=AfmBOortqVW6P_cZq5ORQxY7-fIMBfuFfWAas8VHjwBLU7uTa0kxDcqM#:~:text=Love%20your%20colour%20with%20Resene,swatches%20from%20other%20finishing%20suppliers

they’re curated labels, not an algorithmic encoding. They don’t cover every possible RGB value,
and new colors would need new coined names. Also, some names can be long or culturally
specific. Thus, while human-friendly, they don’t fulfill the full reversibility requirement. (Other
curated lists – e.g. Crayola crayon colors, Pantone names – have similar limitations in scope and
consistency.)

Color Taxonomies (ISCC–NBS, Munsell, etc.): Scientific naming systems classify colors by hue/
lightness/saturation categories (e.g. “vivid yellowish green” in the ISCC–NBS nomenclature).
These provide descriptive clarity and are grounded in perception . However, they bucket the
continuum into broad categories rather than uniquely naming each RGB; many distinct colors
share the same descriptor. They are great for communication (since terms like “light blue” are
easily understood) but inherently lossy – not a one-to-one encoding of exact values.

In summary, existing name sets either prioritize human meaning (but lack completeness) or are codes
like hex values (complete but not human-friendly). None fully satisfy our goal of a comprehensive,
pronounceable, reversible naming scheme. This motivates creating an algorithmic encoding that
yields a unique “name” for any RGB color while remaining easy to speak and remember.

Designing a Pronounceable, Reversible Encoding

To achieve a lossless mapping to pronounceable names, we need to encode the 24-bit color value
into a sequence of syllables or words. The design considerations include: how to partition the bits, what
“alphabet” of sounds to use, and how to ensure the result is pleasant and unambiguous. Several
approaches can be considered:

Syllable-Based Phonetic Encoding (Proquints and Beyond)

One proven approach is to encode binary data as a sequence of pronounceable syllables. A notable
example is the Proquint scheme (PRO-nounceable QUINTuplets) by Daniel Wilkerson, which maps each
16-bit chunk into a 5-letter “word” of alternating consonant and vowel letters . In Proquint, 4 bits
choose a consonant and 2 bits choose a vowel, repeated in a C–V–C–V–C pattern to cover 16 bits .
For example, an IP address 127.0.0.1 becomes "lusab-babad" under Proquint encoding . The
generated “words” are nonsense, but they follow English-like phonotactics, making them relatively
easy to read and spell. The consonant and vowel sets are carefully chosen to avoid letters that sound
confusable (for instance, Proquint omits ambiguous letters like c, x, q and uses a fixed set of 16
consonants and 4 vowels) . Separators (like hyphens) can be used between syllable blocks for
readability, though they don’t carry data .

Building on this idea, we can encode a 24-bit color in a similar fashion. One practical design is to split
the 24 bits into two 12-bit chunks, and encode each chunk as a CVC syllable (Consonant–Vowel–
Consonant). Using a larger phonetic alphabet (e.g. 32 possible consonants = 5 bits, and 4 vowels = 2
bits) yields exactly 12 bits per CVC syllable . This gives us two pronounceable syllables covering all 24
bits. For example, in a prototype called the “Over-Color” scheme, the color #4E9AF8 is encoded as
“lum-kiv…” (full example below) – a unique, pronounceable name . Each syllable is drawn from a
controlled lexicon so that, even though the words are artificial, they avoid problematic combinations
and can be sounded out easily.

Notably, this approach is fully reversible and collision-free: given the mapping tables for consonants
and vowels, the decoding algorithm can reconstruct the exact RGB value from the two-syllable string.
The names are roughly word-length (6–7 letters plus a hyphen), which is short enough to be

•

5

6

7

8

9

10

11

12

2

https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=%3E%20%3E%20Four,bits%20as%20a%20vowel%3A
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,lisaf
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0%201%202%203
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0q
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY

manageable. They look like gibberish “words,” but are designed to “look like language” – e.g. their
frequency distribution of syllable patterns can mimic natural language Zipfian trends , meaning they
don’t appear as random jumbles. An additional benefit is that this method is purely algorithmic (bitwise
operations and table lookups), so implementation is straightforward and fast in any programming
language .

Example – Over‐Color Scheme: Every RGB value is first packed into a 24-bit integer and split into two
12-bit halves . Each 12-bit half is encoded as one consonant-vowel-consonant syllable. To improve
usability, the Over-Color design adds a few extra characters: after the two core syllables, it appends: (a)
a letter indicating a broad lightness bucket, (b) a letter for a chroma/saturation bucket, and (c) a final
check vowel for error-checking . These suffix characters are inspired by how human color naming
often adds modifiers like “light” or “deep” (ISCC–NBS system) , and by parity-check digits in data
transmission. The check vowel is computed from the data bits (e.g. an XOR of the other components) to
catch single-letter errors – if a name is mistyped or misheard, an invalid parity vowel hints at the
mistake. In total, the encoded name might have ~8–9 letters plus an optional hyphen. For #4E9AF8 (a
bright blue), the scheme yields “lum-kiveut” . Here "lum" and "kiv" encode the 24-bit value,
"e" might encode a lightness category (e.g. medium-bright), "u" a chroma category (e.g. vivid), and
"t" is the parity check letter. The result is a unique, pronounceable identifier for that exact color. A

person could read “lum-kiveut” over the phone, and the listener (or a computer) could decode it
unambiguously back to 4E9AF8 .

This syllabic encoding approach excels in algorithmic simplicity and meets all the criteria: - Reversible:
By design – the encoding is just a base-N representation in a phonetic alphabet . - Audibly clear:
Only a restricted set of phonemes is used (no two syllables or letters sound too alike), and the optional
parity vowel adds robustness against slips. - No case or hard-to-say symbols: Outputs are all lower-case
letters forming pseudo-words. The only punctuation (hyphen) is for visual grouping and can be
pronounced as “dash” or omitted. - Multi-language potential: The scheme can be localized by swapping
alphabets . For instance, one could create a Cyrillic consonant/vowel table and encode the same bits
into pronounceable Russian-like syllables. Similarly, one could adapt to languages with different
phonemic sets or even map the syllables to a fictional script for stylistic purposes . The underlying
encoding remains the same; only the symbols representing the phonemes change. This flexibility
means the concept can accommodate cultural/linguistic preferences (for example, avoiding sounds that
speakers of a certain language find difficult).

Other examples of syllabic or phonetic encodings include Bubble Babble, a scheme used to represent
binary data (like SSH fingerprints) as sequences of syllables. Bubble Babble produces strings like
"xesef-disof-gytuf-katof-movif-baxux" , which look nonsensical but are divided into vowel-

consonant combinations that can be pronounced . It’s a similar idea, though Proquints/Over-Color
use a more constrained pattern to improve readability. In practice, any fixed mapping of bit patterns to
pronounceable syllables can serve – the differences lie in which phonemes are allowed and how the bits
are distributed among them.

Word-Based Encoding (Real Dictionary Words)

Another approach is to encode colors as a combination of actual words from a dictionary. The concept is
akin to the PGP Word List or Diceware passphrases, where binary data is converted into a sequence of
common words for easier memorization. For a 24-bit color, one could use either:

Two words from a large list, or
Three words from a smaller list.

13

14

14

5

15

16

12

11

17

18

19

•
•

3

https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=Bubble%20Babble%20is%20a%20good,nonsensical%20but%20readable%20output%20like

For example, if we had a list of 4096 short words, we could map the first 12 bits of a color to one word
and the last 12 bits to a second word, since $4096 = 2^{12}$. This would yield combinations like
"Mango Fuzz" or "Tiger Lamp" (hypothetically). Alternatively, the PGP word list approach uses

256 words and encodes each byte as one word. Using that, a 3-byte RGB value would become three
words (e.g. "tree arrow bucket" – just an illustration). The advantage of word-based schemes is
that real words can be easier to spell and recall than made-up syllables. They also have built-in
redundancy: mishearing one word might be caught because it doesn’t make sense in context or isn’t in
the list at all. In fact, the PGP word list was designed such that the words for byte values are
phonetically distinct (e.g. no two words in the list sound too similar) , and even/odd byte
positions use different lists to detect transpositions .

However, there are notable trade-offs: - Name length: Two or three words will typically have more
characters (and syllables) than a two-syllable proquint. e.g. "lavender notebook" is longer to say
and write than a single invented word like "lumkiv" . This can affect usability when communicating or
typing the names. - Ambiguity in spelling: Real English words can have tricky spelling or homophones.
(Though a curated list can avoid homophones, one still might confuse "grey" vs "gray" or have to
clarify if a word is uncommon.) Made-up syllables, by contrast, can be consistently phonetic. - Semantic
distraction: Words carry meaning. Using random word pairs might produce combinations that either
inadvertently describe a different color or object (“Blue Banana”) or just sound nonsensical (“Electric
Crayon”). This can be amusing but might also confuse users or not be universally culturally neutral.
There’s also a risk of offensive combinations if words aren’t filtered carefully. - Vocabulary limits: To
cover 16 million values, the word list approach stretches beyond the size of typical controlled
vocabularies. A list of 4096 safe, short, distinct words is feasible (for reference, Diceware uses 7776
common words, each encoding ~12.9 bits). But maintaining and localizing such a list in multiple
languages is a substantial task. Each language would need its own carefully vetted list to preserve the
pronounciation advantage.

In summary, word-based encoding is highly human-readable (the names sound like phrases or
sentences), but the multi-word names may be longer than an optimized syllabic code. They are
reversible if the word-to-value mapping is fixed, but implementation requires storing the dictionaries.
This approach may be worthwhile if maximizing memorability is more important than minimizing
length or if one wants the codes to double as passphrases. For color identification purposes, though,
users might find arbitrary word pairs only slightly more meaningful than a made-up word – both
ultimately label a color in an arbitrary way.

Phonotactic Name Generators

Between strict syllable encoding and fixed dictionaries lies an approach of algorithmically generated
“names” following linguistic patterns. Instead of a rigid CVC-CVC format, one could design a generator
that composes a variable-length pronounceable name from the 24-bit input. For example, certain bits
might choose a syllable structure or stress pattern, and others pick letters or phonemes, constructing a
name that looks more like a natural name (perhaps 2–3 syllables long, not all the same pattern). This is
akin to how some videogames or fantasy novel authors generate plausible character or place names via
phonotactic rules.

The benefit would be greater variety and naturalness in the names – not every color name would look
like the same kind of gibberish. Some might accidentally resemble real words or be more lyrical (which
could aid memory). You could also design the generator to avoid specific undesired sequences (like
anything that spells a real profanity, for instance).

7 9

10

20

4

https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=%3E%20%3E%20Four,bits%20as%20a%20vowel%3A
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0%201%202%203
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0q
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY

However, ensuring full reversibility becomes more complex here. The encoding must be deterministic
and injective (one-to-one). This likely means you’d still define a fixed mapping from bitfields to particular
syllable choices, just with a more complex grammar. Every possible output “name” must map uniquely
to one input color. It’s doable (essentially creating a custom base-N number system where “digits” are
syllables of various shapes), but the complexity of encoding/decoding increases. Moreover, if names
have variable length or form, users might be unsure if a given name is complete or truncated. A fixed-
length or clearly delimited format has the advantage in an encoding context that the boundaries are
known (like the hyphen-separated blocks in proquints).

In practice, the syllabic approach with fixed pattern already achieves a language-like feel and is
easier to implement. So, phonotactic generators are an interesting area for future exploration (perhaps
to improve aesthetics of the names), but they would need careful design to maintain the strict one-to-
one property.

Symbol or Color-Code Based Mnemonics

For completeness, one could consider non-verbal or hybrid schemes – for instance, representing a color
by a sequence of colored emoji or icons. For example, the red, green, and blue components could each
be mapped to an icon or a color name in another language, resulting in a visual “code”. While this might
be fun in a UI (e.g. showing as a code for a color), it fails the pronounceability test. Ultimately,
someone will try to read it (“blue dolphin guitar?”), which is neither standardized nor straightforward.
Thus, purely symbolic encodings tend not to meet our goals – they might serve as memory aids or
additional annotations (like a pictogram alongside the spoken name), but we still need a textual name
for unambiguous communication.

Having considered these methods, the syllable-based encoding (inspired by Proquints) emerges as a
particularly promising solution. It balances brevity, clarity, and completeness. We can fine-tune it with
ideas from human linguistics (like the lightness/chroma modifiers) and data integrity (parity check) to
further enhance usability. Below is a comparison of the discussed approaches, including existing
naming systems and the new encoding schemes:

Comparison of Alternatives

Scheme /
System

Reversible?
Pronounceable &
Distinct

Scope
(Coverage)

Notes (Pros/Cons)

CSS/X11
Color
Names

No – one
name maps
to a specific
RGB (many
colors lack
names) .

Yes (simple
common words)

~140 names
(very limited)

.

Easy for basic colors; not
unique for arbitrary colors
(e.g. no name for
#123456). Duplicates

exist (e.g. “aqua” = “cyan”).
Useful in web design, but
not an encoding system.

1

1

5

https://www.w3schools.com/cssref/css_colors.php#:~:text=All%20modern%20browsers%20support%20the,along%20with%20different%20text%20colors
https://www.w3schools.com/cssref/css_colors.php#:~:text=All%20modern%20browsers%20support%20the,along%20with%20different%20text%20colors

Scheme /
System

Reversible?
Pronounceable &
Distinct

Scope
(Coverage)

Notes (Pros/Cons)

XKCD
Survey
Names

No – only
covers
popular
colors, not
every value

.

Mostly yes
(natural phrases)

954 names
.

Covers most “normal”
colors with fun, crowd-
sourced labels. Names are
understandable (e.g. “pale
yellow”), but many RGB
values still have no unique
name. Not systematic or
extensible without another
survey.

Resene
Paint
Colors

No – finite
set of paint
colors,
others
unnamed.

Yes (real words,
often two-word
names)

~1,300–6,000
names
(depending on
catalog) .

Huge curated palette used
in design/paint industry.
Names are creative and
human-friendly (e.g.
“Salsa”, “Butterfly Bush”).
Still nowhere near 16
million; not designed to
encode arbitrary colors.
Good inspiration for
descriptors but not a
coding scheme.

ISCC–
NBS /
Munsell
Notation

No –
describes
color in
categories,
not unique
per RGB.

Partially (uses
standardized
terms, e.g. “light”,
“dark”, basic hues)

Continuous
spectrum (all
colors fit into
some
category) but
not unique.

Useful for descriptive
naming and understanding
color relationships.
However, many different
RGB values share the same
name (e.g. dozens of
varieties might all be
“moderate red”). Not an
exact identifier.

Hex Code
(baseline)

Yes –
#RRGGBB is

fully specific.

No –
alphanumeric
code, not
pronounceable as
a word.

All 16,777,216
colors.

The default we want to
improve upon. Hex is
compact and precise, but
reading out “4E 9A F8” is
error-prone (letters sound
like others, one digit wrong
breaks it). Great for
machines, poor for
humans.

21

2

4

6

https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=Image
https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=The%20full%20table%20of%20954,would%20be%20a%20huge%20headache
https://www.resene.co.nz/swatches/?srsltid=AfmBOortqVW6P_cZq5ORQxY7-fIMBfuFfWAas8VHjwBLU7uTa0kxDcqM#:~:text=Love%20your%20colour%20with%20Resene,swatches%20from%20other%20finishing%20suppliers

Scheme /
System

Reversible?
Pronounceable &
Distinct

Scope
(Coverage)

Notes (Pros/Cons)

Proquint/
Phonetic
Syllables

Yes – one-to-
one
mapping
from RGB to
syllables

.

Yes – outputs
pseudo-words
following phonetic
rules. Designed to
avoid
homophones.

All 16,777,216
colors (by
construction).

Example: #4E9AF8 →
“lumkiv…”. Highly
systematic and compact
(~2–3 syllables per color).
Easy to parse and transmit
verbally. Needs carefully
chosen letter sets to avoid
confusion . Hyphen
separators can be used for
readability without
affecting encoding . This
is the core of the Over-
Color scheme .

Over-
Color
(CVC-CVC +
extras)

Yes –
extension of
proquint,
with added
checksum.

Yes –
pronounceable
nonsense words;
suffix gives hints
(light/dark, etc.).

All colors
(extensible to
larger gamuts
too) .

Example: #4E9AF8 →
“lum-kiveut” . Two CVC
syllables encode the RGB
exactly; plus e / u
indicating lightness/chroma
bins and t as a parity
check . Very user-
friendly: a transcription
error is likely caught by
parity. Lightness/chroma
tags make names a bit
more meaningful (you can
tell roughly if a color is
light/dark or vivid by those
letters, analogous to saying
“light” or “deep”). Slightly
longer (8–9 letters) but still
reasonable. Open to
localization (could swap in
other consonant/vowel sets
or even non-Latin scripts)

.

11

9

10

11

17

12

5

18

7

https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0%201%202%203
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0q
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY

Scheme /
System

Reversible?
Pronounceable &
Distinct

Scope
(Coverage)

Notes (Pros/Cons)

Bubble
Babble
Encoding

Yes –
algorithmic
(checksum
included by
design).

Mostly – outputs a
series of syllables
like “bab”, “ded”,
etc.

All colors (in
theory).

Example: might produce
names like “xesef-disof-...”.
Similar to proquint in using
alternating vowels, but the
specific phoneme set
differs. Includes a
checksum and always
outputs a fixed pattern with
hyphens. Readable but
slightly longer output than
optimized proquint (due to
fixed padding). Not tailored
for color specifically, but
applicable.

Dictionary
Words (2–
3 words)

Yes – if using
fixed word
lists for each
chunk.

Yes – real English
words, likely easy
to say.

All colors (if
list is big
enough).

Example: #4E9AF8 →
“guitar lava” (hypothetical).
Two-word scheme requires
4K+ unique words; a three-
word scheme could use
shorter list (256 or 1024
words) for each. Very clear
when spoken, but lengthier
to convey. Needs large
curated lexicon (with no
collisions or confusable
words). May produce odd
combinations and requires
multilingual word lists for
localization.

“Hex
Speak” or
Base-N
Codes

Yes –
encodes
value in an
alternate
base (e.g.
base-36,
etc.).

No – often
includes digits or
unpronounceable
sequences.

All colors (by
definition).

e.g. Base-36 might encode
0x4E9AF8 as “3W6O8” –

shorter than hex, but still
not word-like. Some hex-
speak might form a word
(“FACE” for 0xFACE), but
most are not readable.
Lacks consistent
pronunciation and could
accidentally form rude or
confusing strings. Not
suitable for verbal use.

8

Scheme /
System

Reversible?
Pronounceable &
Distinct

Scope
(Coverage)

Notes (Pros/Cons)

Phonetic
Algorithm
(variable)

Yes – if
carefully
designed,
but
decoding is
complex.

Intended to be,
but quality
depends on
design.

All colors.

This is a category for
hypothetical advanced
name generators. Could
yield more naturalistic
names (e.g. “Loranda”,
“Sappiny”). Increases
complexity and risk of error
in decoding. Not yet a
standard; would require
significant testing to ensure
no collisions and ease of
use.

(Table legend: “Reversible” means a unique mapping both ways. “Pronounceable & Distinct” reflects whether
names are likely to be spoken correctly and not easily mistaken for one another. “Scope” indicates how many
distinct colors the scheme can name; all new schemes aim for full 24-bit coverage. The Notes highlight
strengths and weaknesses for usability, clarity, and implementation.)

Recommendations and Future Development

Most promising approach: The syllable-based encoding (CVC patterns inspired by Proquints),
especially the enhanced Over-Color variant, appears to best satisfy the project goals. It provides a
practical balance between brevity and clarity. Every RGB value gets a compact name that can be
vocalized and remembered. Features like the lightness/chroma suffix and parity check in Over-Color
specifically address human factors (making the gibberish a bit more informative and robust against
mistakes) . We recommend using this method as a starting point for implementation.

Implementation strategy: Start by defining the consonant and vowel sets for the encoding. Based on
prior art, a set of consonants around 20–32 in number (excluding ones that sound too similar) and 4–5
vowels works well . For example, the Proquint set (b, d, f, g, h, j, k, l, m, n, p, r, s, t, v, z for consonants
and a, i, o, u for vowels) could be expanded slightly if needed for 5-bit consonant values . Test the
chosen phoneme set by generating many random color names and checking for any unintended words
or hard-to-pronounce combos. Minor adjustments (like avoiding starting a syllable with “v” if it tends to
sound like “b” on a bad phone connection) can improve auditory distinguishability.

The encoding algorithm itself is straightforward bit math (split integer, lookup letters) . This can be
implemented in a small library in various languages. In fact, libraries for Proquint already exist , and
those can be adapted to 24-bit and tweaked letter sets. Similarly, Hashids/Sqids libraries (which encode
integers to URL-safe strings) could be repurposed, though those focus on shortness over
pronounceability .

Testing and iteration: Once implemented, it’s important to test the scheme in real use. For example,
generate a random set of color names and have users read them to each other to see if the decoding
matches. This can reveal if certain letters are consistently misheard (e.g. “m” vs “n”) or if certain syllables
are confusing. If the parity check is implemented, verify that it indeed flags errors in practice. Real-
world use (maybe a plugin for a color-picker tool that labels colors with these names) could provide
feedback on whether the names are as “human-friendly” as intended. Adjust the phonetic alphabet or

5

9

22

23

24

25 26

9

https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0%201%202%203
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,bits%20as%20a%20vowel%3A
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY

add clarifying rules as needed (for instance, one might decide to avoid producing double vowels or any
output that looks like a real common word, to prevent misunderstanding).

Comparisons with alternatives: Although the proquint-style encoding is recommended, it could be
worthwhile to also implement a two-word dictionary prototype for comparison. For instance, take a
known word list (like the Diceware list or another source of 4096 short words) and encode some
colors with it, then ask users which they find easier to remember or communicate – the made-up
syllable or the two English words. It may turn out that for quick reference (e.g. telling a colleague “use
the color rose tiger for the background”), real words have merit. If so, one might consider offering both
forms in a software context (a bit like how URLs sometimes have both a short hashid and a human word
code). However, maintaining consistency is key – one canonical format should be the standard for
reversibility, to avoid confusion. The simpler syllable format likely wins out for being unambiguous and
concise.

Future work: The framework of this encoding can extend to other color systems and depths. For
example, for 32-bit colors (with alpha channel or HDR), you could just add another syllable or another
suffix letter – the method scales by chaining more syllables for more bits . For multi-dimensional
color spaces (CMYK, etc.), you can design a mapping (the Over-Color notes suggest one syllable for K
and three for CMY in CMYK). This could allow consistent naming across different color models.
Another avenue is localization: creating language-specific consonant/vowel tables so that, say, a
Japanese version yields pronounceable katakana sequences for colors, or an Italian version uses that
language’s phonetics. This might involve consulting linguists to ensure the letter combinations chosen
are valid and distinct in the target language.

Finally, while the names generated are not meant to convey meaning, it’s interesting to consider
mnemonic enhancements. For instance, the lightness/chroma indicators already give a hint of the
color’s appearance. One could imagine encoding the hue in a more explicit way (perhaps a set of
syllables that roughly correspond to red, green, blue, etc., so that part of the name hints at the hue).
This ventures into semi-reversible territory (since any such hint would either reduce uniqueness or be
wrong for edge cases), but it might be done at a coarse level without sacrificing uniqueness – similar to
how the lightness tag works. Such ideas tread a fine line between a truly arbitrary code and a
descriptive name. The current recommendation is to keep the encoding mostly abstract (so users learn
it as a code), rather than overload it with too much semantic meaning that might mislead (e.g. one
shouldn’t think a color name ending in “-red” actually is a red shade unless that’s guaranteed).
Nonetheless, exploring this could be a future improvement to make the names even more intuitive.

Conclusion: By using a pronounceable encoding scheme, we can assign every RGB color a unique
“name” that humans can handle in spoken or written communication. Among the options, a proquint-
style syllabic code augmented with human-inspired tweaks offers an excellent solution. It combines
the precision of a code with the familiarity of language. Going forward, implementing this scheme and
comparing it with other human-friendly codes will ensure we create a naming system that is not only
technically reversible but truly optimized for people.

20

17

17

10

https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY

CSS Colors
https://www.w3schools.com/cssref/css_colors.php

Color Survey Results – xkcd
https://blog.xkcd.com/2010/05/03/color-survey-results/

Resene Paints - Over 6000 Colour Swatches To View & Download
https://www.resene.co.nz/swatches/?srsltid=AfmBOortqVW6P_cZq5ORQxY7-fIMBfuFfWAas8VHjwBLU7uTa0kxDcqM

Untitled document
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY

readable - Does a pronounceable encoding exist? - Stack Overflow
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist

1

2 3 21

4

5 11 12 13 14 15 16 17 18 20 23 24 25 26

6 7 8 9 10 19 22

11

https://www.w3schools.com/cssref/css_colors.php#:~:text=All%20modern%20browsers%20support%20the,along%20with%20different%20text%20colors
https://www.w3schools.com/cssref/css_colors.php
https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=The%20full%20table%20of%20954,would%20be%20a%20huge%20headache
https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=Image
https://blog.xkcd.com/2010/05/03/color-survey-results/#:~:text=Image
https://blog.xkcd.com/2010/05/03/color-survey-results/
https://www.resene.co.nz/swatches/?srsltid=AfmBOortqVW6P_cZq5ORQxY7-fIMBfuFfWAas8VHjwBLU7uTa0kxDcqM#:~:text=Love%20your%20colour%20with%20Resene,swatches%20from%20other%20finishing%20suppliers
https://www.resene.co.nz/swatches/?srsltid=AfmBOortqVW6P_cZq5ORQxY7-fIMBfuFfWAas8VHjwBLU7uTa0kxDcqM
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://docs.google.com/document/d/1X99oQLhn6Vvgvlh4c5Yv9m9qyxyKodIy5ofG3QG-7nY
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=%3E%20%3E%20Four,bits%20as%20a%20vowel%3A
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,lisaf
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0%201%202%203
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,0q
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=Bubble%20Babble%20is%20a%20good,nonsensical%20but%20readable%20output%20like
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist#:~:text=,bits%20as%20a%20vowel%3A
https://stackoverflow.com/questions/1648206/does-a-pronounceable-encoding-exist

	Encoding RGB Colors into Pronounceable, Reversible Names
	Introduction
	Existing Color Naming Systems and Their Limitations
	Designing a Pronounceable, Reversible Encoding
	Syllable-Based Phonetic Encoding (Proquints and Beyond)
	Word-Based Encoding (Real Dictionary Words)
	Phonotactic Name Generators
	Symbol or Color-Code Based Mnemonics

	Comparison of Alternatives
	Recommendations and Future Development

